All posts tagged: Linear Regression

Data Analysis and Interpretation Capstone

So, this is the end. It took six months, but today I completed and was certified for the Data Analysis and Interpretation Specialization by Wesleyan University through Coursera. When I first started in October 2015, I had no idea how to write code in Python, let alone produce graphs and run statistical analysis. It has been a fun experience learning how to write code in Python and learning the different kinds of statistical methods. Ironically, I learned these after I left graduate school. One would think that these are method courses you would take in school. For the Capstone Project, I do wish the data was more complete and over a longer period of time. It is difficult to run analysis on data that only goes back as far as 1972 and in many cases, missing records for many years in between. The results can be quite misleading, as it pointed to fertility rate as being highly correlated with environmental sustainability. However, fertility rate, in many cases is contingent on many different factors that are both quantitative …

Basic Regression on Urban Population Growth and GDP per Capita

Continuing with Regression Modelling in Practice… If you have been following along with my work, you will know that I am interested in the relationship between urbanization and economic development and am posing the general question of whether urbanization drives economic growth? Through the past two courses, Data Analysis Tools and Data Management and Visualization, I established that there was a correlation between urban population and GDP per capita. For this assignment, my primary explanatory variable is Urban Population Growth rate and response variable is GDP per capita, both figures are from 2010. This is my code in Python: import pandas import numpy import seaborn import matplotlib.pyplot as plt import statsmodels.formula.api as smf import statsmodels.stats.multicomp as multi gapminder = pandas.read_csv(‘Data1.csv’, low_memory=False) gapminder[‘GDP2010’] = gapminder[‘GDP2010’].replace(0,numpy.nan) gapminder[‘GDPGrowth2010’] = gapminder[‘GDPGrowth2010’].replace(0,numpy.nan) gapminder[‘UrbanPop2010’] = gapminder[‘UrbanPop2010’].replace(0,numpy.nan) gapminder[‘UrbanPopGrowth2010’] = gapminder[‘UrbanPopGrowth2010’].replace(0,numpy.nan) gapminder = gapminder[[‘Country’, ‘UrbanPop2010’, ‘UrbanPopGrowth2010’, ‘GDP2010’, ‘GDPGrowth2010’]] gapminder = gapminder.dropna() PopDes = gapminder[‘UrbanPopGrowth2010’].describe() print (PopDes) RegData = gapminder[[‘Country’, ‘UrbanPopGrowth2010’, ‘GDP2010’]] RegData[‘UrbanPopGrowth2010’] = RegData[‘UrbanPopGrowth2010’] – RegData[‘UrbanPopGrowth2010′].mean() print (RegData.describe()) UrbanReg = smf.ols(formula=’GDP2010 ~ UrbanPopGrowth2010′, data=RegData).fit() print (UrbanReg.summary()) seaborn.regplot(x=’UrbanPopGrowth2010′, y=’GDP2010’, fit_reg=True, data=RegData) plt.xlabel(‘Urban Population Growth …