All posts tagged: Economic Growth

Lasso Regression – Machine Learning

Machine Learning Data Analysis This is the third lesson of the fourth course of my Data Analysis and Interpretation Specialization by Wesleyan University through Coursera. If you have been following along with my work, you will know that I am interested in the relationship between urbanization and economic development and am posing the general question of whether urbanization drives economic growth? For this assignment, the goal is to run a Lasso Regression that identifies the impact of each of my explanatory variables: Urban Population, Urban Population Growth, GDP Growth, Population Growth, Employment Rate, and Energy Use per Capita in 2007. As it is a linear regression model, I am able to use a quantitative variable. Unlike the previous lesson, I can use GDP per Capita 2007 as is, without having to convert it into a categorical variable. This time, the training data set is 70% and the test data set is 30% of the original data, which means there are 100 observations in my training data set vs. 43 in my test data set. pred_train.shape = (100, 6) …

Logistics Regression on Economic Development

Last lesson of Regression Modelling in Practice… If you have been following along with my work, you will know that I am interested in the relationship between urbanization and economic development and am posing the general question of whether urbanization drives economic growth? Through the past two courses, Data Analysis Tools and Data Management and Visualization, I looked at the correlation between urbanization and economic development and established that there was a correlation between urban population and GDP per capita. For this last assignment in the course Regression Modelling in Practice, I am again examining GDP per Capita as the response variable. I am using the new data set I created in the last assignment from Gapminer, which as  I explained, holds a more complete set of data if I used the year 2007 instead of 2010. As a logistic regression is performed on a categorical response variable with two levels and multiple explanatory variables, I had to bin GDP per Capita into two and recode them: 0 = Countries with a GDP per Capita less than …

Correlations! Urbanization and Economic Development in Rich and Poor Countries

Continuing with Data Analysis Tools… If you have not read my previous posts, I am currently enrolled in a Data Analysis Specialization with Wesleyan University through Coursera. With data from Gapminder, I am exploring a broad and basic question: does urbanization drive economic growth? For those of you interested in reading my literature review to gain a background on this project, please visit this page. Finally! Quantitative to quantitative variable analysis! This is the lesson I have been waiting for. With my interest in urbanization and economic development, the data I pulled from Gapminder are all quantitative. As I previously mentioned, I do not like categorizing quantitative data because I believe it introduces too much subjectivity. Unless the data is qualitative to begin with, it makes little sense to categorize data. Compared to the other types of correlation tests, Pearson’s Correlation was relatively easy to perform in both Python and SAS. I looked at the relationships between urbanization rate, as measured by both urban population growth rate and percentage of population in large cities with over 1 …