# Month: February 2016

## Lasso Regression – Machine Learning

Machine Learning Data Analysis This is the third lesson of the fourth course of my Data Analysis and Interpretation Specialization by Wesleyan University through Coursera. If you have been following along with my work, you will know that I am interested in the relationship between urbanization and economic development and am posing the general question of whether urbanization drives economic growth? For this assignment, the goal is to run a Lasso Regression that identifies the impact of each of my explanatory variables: Urban Population, Urban Population Growth, GDP Growth, Population Growth, Employment Rate, and Energy Use per Capita in 2007. As it is a linear regression model, I am able to use a quantitative variable. Unlike the previous lesson, I can use GDP per Capita 2007 as is, without having to convert it into a categorical variable. This time, the training data set is 70% and the test data set is 30% of the original data, which means there are 100 observations in my training data set vs. 43 in my test data set. pred_train.shape = (100, 6) …

## Random Forests – Machine Learning

Machine Learning Data Analysis This is the second lesson of the fourth course of my Data Analysis and Interpretation Specialization by Wesleyan University through Coursera. If you have been following along with my work, you will know that I am interested in the relationship between urbanization and economic development and am posing the general question of whether urbanization drives economic growth? For this assignment, the goal is to create a random forest that identifies the varying importance of my explanatory variables: Urban Population, Urban Population Growth, GDP Growth, Population Growth, Employment Rate, and Energy Use per Capita in 2007. For my response variable, I created a categorical variable from GDP per Capita 2007. I separated the data into two levels, where GDP per Capita 2007 is lower than 10000 is 0 or low and where GDP per Capita 2007 is higher than 10000 is 1 or high. Just as in the last assignment, when my test sample is set at 40%, the result is 58 test samples and 85 training samples out of 143 total, with …

## I Forgot Hope, Is What Makes the World Beautiful

*very very rough hahaha kind of rusty. I believe that we are born pure Clean without evil But why do these things happen So I descended into the darkness In my search for the meaning Of why Fog and mist crept in Covered every path Colored everything gray Trapped within the shadows Trapped within my cave Within my own head So I saw nothing Save for darkness And I accepted it as fact   I came out tainted Forgotten my belief With no reminders of what came first But back into the light The sun shines Cleared away the shades Then I remembered Hope is what makes the world beautiful Because without hope there is no love.

## Decision Trees – Machine Learning

Machine Learning Data Analysis This is the start of the fourth course of my Data Analysis and Interpretation Specialization by Wesleyan University through Coursera. If you have been following along with my work, you will know that I am interested in the relationship between urbanization and economic development and am posing the general question of whether urbanization drives economic growth? Now, as I have started working, I do not have as much time. For this course, I decided to focus solely on Python, instead of both Python and SAS as in the past. I am not abandoning SAS but I will probably take the time to learn SAS after this course ends. For this assignment, the goal is to create a decision tree that correct classifies samples according to a binary, categorical response variable. For my response variable, I created a categorical variable from GDP per Capita 2007. I separated the data into two levels, where GDP per Capita 2007 is lower than 10000 is 0 or low and where GDP per Capita 2007 is …